All Issue

2020 Vol.36, Issue 9 Preview Page

Research Article

30 September 2020. pp. 45-55
Abstract
References
1
Amirkhanov, A., Heinzl, C., Reiter, M., Kastner, J., and Gröller, E. (2011), "Projection-based Metal-artifact Reduction for Industrial 3D X-ray Computed Tomography", IEEE Transactions on Visualization and Computer Graphics, Vol.17, pp.2193-2202.
10.1109/TVCG.2011.22822034338
2
ASTM (2011), "E1441-11 Standard guide for computed tomography (CT) imaging", American Society for Testing and Materials, West Conshohocken, PA.
3
Boas, F. E. and Fleischmann, D. (2012), "CT Artifacts: Causes and Reduction Techniques", Imaging in Medicine, Vol.4, No.2, pp.229-240.
10.2217/iim.12.13
4
Buljac, A., Jailin, C., Mendoza, A., Neggers, J., Taillandier-Thomas, T., Bouterf, A., Smaniotto, B., Hild, F., and Roux, S. (2018), "Digital Volume Correlation: Review of Progress and Challenges", Experimental Mechanics, Vol.58, pp.661-708.
10.1007/s11340-018-0390-7
5
Cnudde, V. and Boone, M. N. (2013), "High-resolution X-ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications", Earth-Science Review, Vol.123, pp.1-17.
10.1016/j.earscirev.2013.04.003
6
Deusner, C., Gupta, S., Kossel, E., Haeckel, M., Freise, M., Anbergen, H., and Wille, T. (2017), "Advanced Mechanical Testing of Gas Hydrate-bearing Sediments", Proceedings of the 19th International Conference on Soil and Geotechnical Engineering, Seoul, Sep 17-21.
7
Heindel, T. J. (2011), A Review of X-ray Flow Visualization with Applications to Multiphase Flows, Journals of Fluids Engineering, Transactions of the ASME, 133, 074001.
10.1115/1.4004367
8
Hermanek P., Rathore J. S., Aloisi V., and Carmignato S. (2018), "Principles of X-ray Computed Tomography", In: Carmignato S., Dewulf W., Leach R. (eds) Industrial X-Ray Computed Tomography. Springer, Cham.
10.1007/978-3-319-59573-3_2
9
yun, S., Lee, J.S., Jeon, S., Kim, Y., Kim, K. Y., and Yun, T. S. (2019), "Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite Using Deep Learning", Tunnel and Underground Space, Vol.29, No.3, pp.184-196.
10
Ju, Y., Xi, C., Zhang, Y., Mao, L., Gao, F., and Xie, H. (2018), "Laboratory in Situ CT Observation of the Evolution of 3D Fracture Networks In Coal Subjected to Confining Pressures and Axial Compressive Loads: A Novel Approach", Rock Mechanics and Rock Engineering, Vol.51, pp.3361-3375.
10.1007/s00603-018-1459-4
11
Ketcham, R. A. and Carlson, W. D. (2001), "Acquistion, Optimization and Interpretation of X-ray Computed Tomographic Imagery: Applications to the Geosciences", Computer & Geosciences, Vol.27, pp.381-400.
10.1016/S0098-3004(00)00116-3
12
Kim, K.Y., Zhuang, L., Yang, H., Kim, H., and Min, K. B. (2016), "Strength Anisotropy of Berea Sandstone: Results of X-ray Computed Tomography, Compression Tests, and Discrete Modeling", Rock Mechanics and Rock Engineering, Vol.49, pp.1201-1210.
10.1007/s00603-015-0820-0
13
Kling, T., Huo, D., Schwarz, J. O., Enzmann, F., Benson, S., and Blum, P. (2016), "Simulating Stress-dependent Fluid Flow in a Fractured Core Sample Using Real-time X-ray CT Data", Solid Earth, Vol.7, pp.1109-1124.
10.5194/se-7-1109-2016
14
Lei, L., Seol, Y., and Jarvis, K. (2018), "Pore-scale Visualization of Methane Hydrate-bearing Sediments with Micro-CT", Geophysical Research Letters, Vol.45, pp.5417-5426.
10.1029/2018GL078507
15
Leißner, T., Diener, A., Löwer, E., Ditscherlein, R., Krüger, K., Kwade, A., and Peuker, U. A. (2020), "3D ex-situ and In-situ X-ray CT Process Studies in Particle Technology - A Perspective", Advanced Powder Technology, Vol.31, pp.78-86.
10.1016/j.apt.2019.09.038
16
Li, X., Diuan, Y., L, S., and Zhou, R. (2017), "Study on the Progressive Failure Characteristics of Longmaxi Shale under Uniaxial Compression Conditions by X-ray Micro-computed Tomography", Energies, Vol.10, No.303, doi:10.3390/en10030303.
10.3390/en10030303
17
Li, X., Li, S., He, J., He, P., and Shi, R. (2020), "In-situ Computed Tomography Technique in Geomechanical Testing", In: da Fontoura, S., Rocca, R.J., & Pavón Mendoza, J. (Eds.), Rock Mechanics for Natural Resources and Infrastructure Development, Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019), CRC Press, pp.80-102.
18
Lima, M. G., Vogler, D., Querci, L., Madonna, C., Hattendorf, B., Saar, M. O., and Kong, X. (2019), "Thermally Driven Fracture Aperture Variation in Naturally Fractured Granites", Geothermal Energy, Vol.7, No.23,
10.1186/s40517-019-0140-9.
19
Lin, Q., Andrew, M., Thompson, W., Blunt, M. J., and Bijeljic, B. (2018), "Optimization of Image Quality and Acquisition Time for Lab-based X-ray Microtomography Using an Iterative Reconstruction Algorithm", Advances in Water Resources, Vol.115, pp.112-124.
10.1016/j.advwatres.2018.03.007
20
Ohtani, T., Nakashima, Y., Nakano, T., and Muraoka, H. (2000), "X-ray CT Imaging of Pores and Fractures in the Kakkonda Granite, NE Japan", Proceedings World Geothermal Congress 2000, Beppu- Morioka, pp.1521-1526.
21
Peng, H., Zhao, Z., Chen, W., Chen, Y., Fang, J., and Li, B. (2020), "Thermal Effect on Permeability in a Single Granite Fracture: Experiment and Theoretical Model", International Journal of Rock Mechanics and Mining Sciences, Vol.131,
10.1016/j.ijrmms.2020.104358.
22
Renard, F., Bernard, D., Desrues, J., and Ougier-Simonin, A. (2009), "3D Imaging of Fracture Propagation Using Synchrotron X-ray Microtomography", Earth and Planetary Science Letters, Vol.286, pp.285-291.
10.1016/j.epsl.2009.06.040
23
Shan, P. and Lai, X. (2019), "Influence of CT Scanning Parameters on Rock and Soil Images", Journal of Visual Communication and Image Representation, Vol.58, pp.642-650.
10.1016/j.jvcir.2018.12.014
24
Shefer, E., Altman, A., Behling, R., Goshen, R., Gregorian, L., Roterman, Y., Uman, I., Wainer, N., Yagil, Y., and Zarchin, O. (2013), "State of the Art of CT Detectors and Sources: A Literature Review", Current Radiology Reports, Vol.1, pp.76-91.
10.1007/s40134-012-0006-4
25
Viggiani, G., Lenoir, N., Bésuelle, P., Di Michiel, M., Marello, S., Desrues, J., and Kretzschmer, M. (2004), "X-ray Microtomography for Studying Localized Deformation in Fine-grained Geomaterials under Triaxial Compression", Comptes Rendus Mecanique, Vol.332, pp.819-826.
10.1016/j.crme.2004.05.006
26
Watanabe, N., Ishibashi, T., Hirano, N., and Tsuchiya, N. (2011), "Precise 3D Numerical Modeling of Fracture Flow Coupled with X-ray Computed Tomography for Reservoir Core Samples", SPE Journal, Vol.16, pp.683-691.
10.2118/146643-PA
27
Watanabe, Y., Lenoir, N., Otani, J., and Nakai, T. (2012), "Displacement in Sand under Triaxial Compression by Tracking Soil Particles on X-ray CT Data", Soils and Foundations, Vol.52, No.2, pp.312-320.
10.1016/j.sandf.2012.02.008
28
Yang, Z., Ren, W., Sharma, R., McDonald, S., Mostafavi, M., Vertyagina, Y., and Marrow, T. J. (2017), "In-situ X-ray Computed Tomography Characterisation of 3D Fracture Evolution and Image-based Numerical Homogenisation of Concrete", Cement and Concrete Composites, Vol.75, pp.74-83.
10.1016/j.cemconcomp.2016.10.001
29
Yang, B., Xue, L., and Zhang, K. (2018), "X-ray Micro-computed Tomography Study of the Propagation of Cracks in Shale during Uniaxial Compression", Environment Earth Sciences, Vol.77, 652.
10.1007/s12665-018-7843-2
30
Zhao, Z. (2017), "Application of Discrete Element Approach in Fractured Rock Masses", In: Shojaei, A. K., and Shao, J. (eds) Porous Rock Fracture Mechanics: with Application to Hydraulic Fracturing, Drilling and Structural Engineering, pp.145-176.
10.1016/B978-0-08-100781-5.00007-5
31
Zhuang, L., Kim, K. Y., Yeom, S., Jung, S. G., and Diaz, M. (2018a), "Preliminary Laboratory Study on Initiation and Propagation of Hydraulic Fractures in Granite Using X-ray Computed Tomography", International Conference on Geomechanics, Geo-energy and Geo-resources (IC3G2018), Sep 22-24, Chengdu.
32
Zhuang, L., Kim, K. Y., Jung, S. G., Diaz, M., Min, K. B., Park, S., Zang, A., Stephansson, O., Zimmermann, G., and Yoon, J. S. (2018b), "Cyclic Hydraulic Fracturing of Cubic Granite Samples under Triaxial Stress State with Acoustic Emission, Injectivity and Fracture Measurements", The 52nd U.S. Rock Mechanics/Geomechanics Symposium. Seattle, ARMA 18-297.
33
Zhuang, L., Kim, K. Y., Jung, S. G., Diaz, M., and Min, K. B. (2019), "Effect of Water Infiltration, Injection Rate and Anisotropy on Hydraulic Fracturing behavior of Granite", Rock Mechanics and Rock Engineering, Vol.52, pp.575-589.
10.1007/s00603-018-1431-3
34
Zhuang, L., Jung, S. G., Diaz, M., and Kim, K. Y. (2020a), "Laboratory Investigation on Hydraulic Fracturing of Granite Core Specimens", In: Shen, B., Stephansson, O., and Rinne, M. (Eds.), Modelling Rock Fracturing Processes - Theories, Methods, and Applications, Springer Nature Switzerland AG.
35
Zhuang, L., Jung, S. G., Diaz, M., Kim, K. Y., Hofmann., H., Min, K. B., Zang, A., Stephansson, O., Zimmermann, G., and Yoon, J. S. (2020b), "Laboratory True Triaxial Hydraulic Fracturing of Granite under Six Fluid Injection Schemes and Grain-scale fracture observations", Rock Mechanics and Rock Engineering,
10.1007/s00603-020-02170-8.
36
Zimmerman, R. W. and Bodvarsson, G. S. (1996), "Hydraulic Conductivity of Rock Fractures", Transport in Porous Media, Vol.23, No.1, pp.1-30.
10.1007/BF00145263
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 36
  • No :9
  • Pages :45-55
  • Received Date : 2020-08-18
  • Revised Date : 2020-09-01
  • Accepted Date : 2020-09-01