All Issue

2021 Vol.37, Issue 9 Preview Page
30 September 2021. pp. 13-24
Abstract
References
1
Benedetto, A., Tosti, F., Ciampoli, L.B., Calvi, A., Brancadoro, M.G., and Alani, A.M. (2017), Railway Ballast Condition Assessment Using Ground-penetrating Radar-An Experimental, Numerical Simulation and Modelling Development, Construction and Building Materials, 140, pp.508-520. 10.1016/j.conbuildmat.2017.02.110
2
Cheon, S.W. (2016), GPR response analysis using numerical modeling for cavity detection, Master's thesis, Sejong University.
3
Choi, Y.G., Seol, S.J., and Suh, J.H. (2001), Dipole Antennas and Radiation Patterns in the Three-Dimensional GPR Modeling, Geophysical exploration, Vol.4, No.2, pp.45-54.
4
Hong, W.T., Kang, S.H., and Lee, J.S. (2015), Application of Ground Penetrating Radar for Estimation of Loose Layer, Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48. 10.7843/kgs.2015.31.11.41
5
Huang, H. and Tutumluer, E. (2011), Discrete Element Modeling for fouled railroad, Construction and Building Materials, 25, pp.3306-3312. 10.1016/j.conbuildmat.2011.03.019
6
Jang, H., Kim, H.J., and Nam, M.J. (2016), Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity, Geophysics and Geophysical Exploration, Vol.19, No.1, pp.20-28. 10.7582/GGE.2016.19.1.020
7
Lee, S.J., Choi, Y.T., and Park, B.S. (2020), Analysis of GPR Signals by Different Frequencies According to Ballast Fouling Degree, Journal of the Korean Society for Railway, Vol.23, No.6, pp.513-523. 10.7782/JKSR.2020.23.6.513
8
Leng, J. and Al-Qadi, I. (2010), Railroad Ballast Evaluation Using Ground-Penetrating Radar: Laboratory Investigation and Field Validation. Transportation Research Record: Journal of the Transportation Research Board, Vol.2159, No.1, pp.110-117. 10.3141/2159-14
9
Ngo, N.T., Indraratna, B., and Rujikiatkamjorn, C. (2016), Micromechanics based Investigation of Fouled Ballast Using Large-scale Triaxial Tests and Discrete Element Modeling, J Geotech Geoenviron Eng., Vol.143, No.2, pp.04016089. 10.1061/(ASCE)GT.1943-5606.0001587
10
Roberts, R. Al-Qadi, I., Tutumluer, E., and Boyle, J. (2009), Subsurface Evaluation of Railway Track Using Ground Penetrating Radar, Technical report, U.S. Department of Transportation.
11
Sadeghi, J., Motieyan-Najar, M.E., Zakeri, J.A., Yousefi, B., and Mollazadeh, M. (2018), Improvement of Railway Ballast Maintenance Approach, Incorporatingballast Geometry and Fouling Conditions, Journal of Applied Geophysics, 151, pp.263-273. 10.1016/j.jappgeo.2018.02.020
12
Selig, E.T. and Waters, J.M. (1994), Track geotechnology and substructure management, Thomas Telford, London. 10.1680/tgasm.20139
13
Shin, J.H., Choi, Y.T., and Jang, S.Y. (2017), New Gain Function Based on Attenuation Characteristics of Ballast Track for GPR Analysis, Journal of the Korean Geo-Environmental Society, Vol.18, No.4, pp.13-21.
14
Sullivan, D.M. (2000), Electromagnetic Simulation Using the FDTD Method, IEEE Press. 10.1109/9780470544518
15
Taflove, A. (1995), Computational electrodynamics: the finite-difference time-domain method, Artech House.
16
Taguchi, G. Chowdbury, S., and Wu, Y. (2005), Taguchi's quality engineering handbook: John Wiley and Sons, Inc. 10.1002/9780470258354
17
Warren, C. and Giannopoulos, A. (2011), Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method, Geophysics, 76:G37. 10.1190/1.3548506
18
Yee, K.S. (1966), Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag, Vol.14, No.3, pp.302-307. 10.1109/TAP.1966.1138693
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 37
  • No :9
  • Pages :13-24
  • Received Date : 2021-08-30
  • Revised Date : 2021-09-15
  • Accepted Date : 2021-09-16