All Issue

2024 Vol.40, Issue 4
31 August 2024. pp. 7-18
Abstract
References
1

Aduda, B. O. (1996), "Effective Thermal Conductivity of Loose Particulate Systems", Journal of Materials Science, Vol.31, No.24, pp.6441-6448.

10.1007/BF00356246
2

Ahmed, I. and Lovell, C. (1993), "Rubber Soils as Lightweight Geomaterials", Transportation Research Record, (1422).

3

Aydilek, A. H., Madden, E. T., and Demirkan, M. M. (2006), "Field Evaluation of a Leachate Collection System Constructed with Scrap Tires", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.8, pp.990-1000. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(990)

10.1061/(ASCE)1090-0241(2006)132:8(990)
4

Bai, Y. and Niedzwecki, J. M. (2014), "Modeling Deepwater Seabed Steady-state Thermal Fields Around Buried Pipeline Including Trenching and Backfill Effects", Computers and Geotechnics, Vol.61, pp.221-229. https://doi.org/10.1016/j.compgeo.2014.05.018

10.1016/j.compgeo.2014.05.018
5

Bauters, T. W. J., Steenhuis, T. S., DiCarlo, D. A., Nieber, J. L., Dekker, L. W., Ritsema, C. J., Parlange, J.-Y., and Haverkamp, R. (2000), "Physics of Water Repellent Soils", Journal of Hydrology, Vol.231, pp.233-243. https://doi.org/10.1016/S0022-1694(00)00197-9

10.1016/S0022-1694(00)00197-9
6

Becker, D.E., Jefferies, M.G., Shinde, S.B., and Crooke, J.H.A. (1985), "Porewater Pressures in Clays below Caisson Islands", Proceeding of Arctic '85: Civil Engineering in the Arctic Offshore, San Francisco, pp.75-83.

7

Bhatt, A., Choo, H., and Burns, S. E. (2022), "Effect of Iron Oxide Coatings on Thermal Conductivity of Silica Sands", KSCE Journal of Civil Engineering, Vol.26, No.5, pp.2153-2159. https://doi.org/10.1007/s12205-022-1863-x

10.1007/s12205-022-1863-x
8

Bosscher, P. J., Edil, T. B., and Kuraoka, S. (1997), "Design of Highway Embankments Using Tire Chips", Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.4, pp.295-304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)

10.1061/(ASCE)1090-0241(1997)123:4(295)
9

Carrillo, M. L. K., Yates, S. R., and Letey, J. (1999), "Measurement of Initial Soil‐water Contact Angle of Water Repellent Soils", Soil Science Society of America Journal, Vol.63, No.3, pp.433-436.

10.2136/sssaj1999.03615995006300030002x
10

Carslaw, H. S., Jaeger, J. C., and Feshbach, H. (1962), "Conduction of Heat in Solids", Physics Today, Vol.15, No.11, pp.74-76. https://doi.org/10.1063/1.3057871

10.1063/1.3057871
11

Chen, S. X. (2008), "Thermal Conductivity of Sands", Heat and Mass Transfer, Vol.44, No.10, pp.1241-1246. https://doi.org/10.1007/s00231-007-0357-1

10.1007/s00231-007-0357-1
12

Choi, Y., Choo, H., Yun, T. S., Lee, C., and Lee, W. (2016), "Engineering Characteristics of Chemically Treated Water-repellent Kaolin", Materials, Vol.9, No.12, p.978.

10.3390/ma912097828774098PMC5456987
13

Choo, H. and Lee, C. (2021), "Inverse Effect of Packing Density on Shear Wave Velocity of Binary Mixed Soils with Varying Size Ratios", Journal of Applied Geophysics, Vol.194, 104457. https://doi.org/10.1016/j.jappgeo.2021.104457

10.1016/j.jappgeo.2021.104457
14

Choo, H., Won, J., and Burns, S. E. (2021), "Thermal Conductivity of Dry Fly Ashes with Various Carbon and Biomass Contents", Waste Management, Vol.135, pp.122-129. https://doi.org/10.1016/j.wasman.2021.08.033

10.1016/j.wasman.2021.08.03334492605
15

Christ, M., Park, J.-B., and Hong, S.-S. (2010), "Laboratory Observation of the Response of a Buried Pipeline to Freezing Rubber-sand Backfill", Journal of Materials in Civil Engineering, Vol.22, No.9, pp.943-950. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000090

10.1061/(ASCE)MT.1943-5533.0000090
16

Côté, J. and Konrad, J.-M. (2005), "A Generalized Thermal Conductivity Model for Soils and Construction Materials", Canadian Geotechnical Journal, Vol.42, No.2, pp.443-458. https://doi.org/10.1139/t04-106

10.1139/t04-106
17

Cui, S.-q., Zhou, C., and Zhang, J.-h. (2022), "Experimental Investigations on the State-dependent Thermal Conductivity of Sand-rubber Mixtures", Journal of Materials in Civil Engineering, Vol.34, No.3, 04021492. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004133

10.1061/(ASCE)MT.1943-5533.0004133
18

Doerr, Stefan H., Shakesby, R. A., and Walsh, RPDm (2000), "Soil Water Repellency: its Causes, Characteristics and Hydro-geomorphological Significance", Earth-Science Reviews, Vol.51, No.1-4, pp.33-65. https://doi.org/10.1016/S0012-8252(00)00011-8

10.1016/S0012-8252(00)00011-8
19

Dong, Y., McCartney, J. S., and Lu, N. (2015), "Critical Review of Thermal Conductivity Models for Unsaturated Soils", Geotechnical and Geological Engineering, Vol.33, pp.207-221.

10.1007/s10706-015-9843-2
20

Farouki, O., and Farouki, O. (1981), Thermal Properties of Soils (Vol. 81). US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory.

10.21236/ADA1117347234475
21

Gangadhara Rao, M. V. B. B., and Singh, D. N. (1999), "A Generalized Relationship to Estimate Thermal Resistivity of Soils", Canadian Geotechnical Journal, Vol.36, No.4, pp.767-773.

10.1139/t99-037
22

Ghaaowd, I., McCartney, J. S., Thielmann, S. S., Sanders, M. J., and Fox, P. J. (2017), "Shearing behavior of Tire-derived Aggregate with Large Particle Size. I: Internal and Concrete Interface Direct Shear", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.10, 04017078.

10.1061/(ASCE)GT.1943-5606.0001775
23

Gilboa, A., Bachmann, J., Woche, S. K., and Chen, Y. (2006), "Applicability of Interfacial Theories of Surface Tension to Water‐repellent Soils", Soil Science Society of America Journal, Vol.70, No.5, pp.1417-1429.

10.2136/sssaj2005.0033
24

Good, R. J. and Girifalco, L. A. (1960), "A Theory for Estimation of Surface and Interfacial Energies. III. Estimation of Surface Energies of Solids from Contact Angle Data", The Journal of Physical Chemistry, Vol.64, No.5, pp.561-565.

10.1021/j100834a012
25

Han, E., Lee, C., Choi, H. J., and Choi, H. (2013), "Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model", Journal of the Korean Geotechnical Society, Vol.29, No.1, pp.93-107.

10.7843/kgs.2013.29.1.93
26

Hoseinpour, S. A., Madhi, M., Norouzi, H., Soulgani, B. S., and Mohammadi, A. H. (2019), "Condensate Blockage Alleviation Around Gas-condensate Producing Wells Using Wettability Alteration", Journal of Natural Gas Science and Engineering, Vol.62, pp.214-223. https://doi.org/10.1016/j.jngse.2018.12.006

10.1016/j.jngse.2018.12.006
27

JGS (Japanese Geotechnical Society) (2000), Test Method for Minimum and Maximum Densities of Sands, JGS 0161, Tokyo.

28

Johansen, O. (1975), Thermal Conductivity of Soils, Ph. D. diss. Norwegian Univ. of Science and Technol., Trondheim (CRREL draf transl. 637, 1977).

10.21236/ADA044002
29

Ko, H. and Choo, H. (2023), "Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils", Journal of the Korean Geotechnical Society, Vol.39, No.8, pp.29-39. https://doi.org/10.7843/KGS.2023.39.8.29

30

Lee, C., Truong, Q. H., Lee, W., and Lee, J.-S. (2010), "Characteristics of Rubber-sand Particle Mixtures According to Size Ratio", Journal of Materials in Civil Engineering, Vol.22, No.4, pp.323-331. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000027

10.1061/(ASCE)MT.1943-5533.0000027
31

Lee, J.-S., Dodds, J., and Santamarina, J. C. (2007), "Behavior of Rigid-soft Particle Mixtures", Journal of Materials in Civil Engineering, Vol.19, No.2, pp.179-184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)

10.1061/(ASCE)0899-1561(2007)19:2(179)
32

Leelamanie, D. A. L., Karube, J., and Yoshida, A. (2008), "Characterizing Water Repellency Indices: Contact Angle and Water Drop Penetration Time of Hydrophobized Sand", Soil Science & Plant Nutrition, Vol.54, No.2, pp.179-187. https://doi.org/10.1111/j.1747-0765.2007.00232.x

10.1111/j.1747-0765.2007.00232.x
33

Liu, L., Cai, G., and Liu, X. (2020), "Investigation of Thermal Conductivity and Prediction Model of Recycled Tire Rubber-sand Mixtures as Lightweight Backfill", Construction and Building Materials, Vol.248, 118657. https://doi.org/10.1016/j.conbuildmat.2020.118657

10.1016/j.conbuildmat.2020.118657
34

Loveridge, F. and Powrie, W. (2013), "Pile Heat Exchangers: Thermal behaviour and Interactions", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, Vol.166, No.2, pp.178-196. https://doi.org/10.1680/geng.11.00042

10.1680/geng.11.00042
35

Lu, N. and Dong, Y. (2015), "Closed-form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature", Journal of Geotechnical and Geoenvironmental Engineering, Vol.141, No.6, 04015016.

10.1061/(ASCE)GT.1943-5606.0001295
36

Lu, S., Ren, T., Gong, Y., and Horton, R. (2007), "An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature", Soil Science Society of America Journal, Vol.71, No.1, pp.8-14. https://doi.org/10.2136/sssaj2006.0041

10.2136/sssaj2006.0041
37

Mashiri, M., Vinod, J., Sheikh, M. N., and Tsang, H.-H. (2015), "Shear Strength and Dilatancy behaviour of Sand-tyre Chip Mixtures", Soils and Foundations, Vol.55, No.3, pp.517-528. https://doi.org/10.1016/j.sandf.2015.04.004

10.1016/j.sandf.2015.04.004
38

Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, M. T., Kurmus, H., Mirzababaei, M., Arulrajah, A., and Horpibulsuk, S. (2020), "Recycling waste rubber tyres in construction materials and associated environmental considerations: A Review", Resources, Conservation and Recycling, Vol.155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679

10.1016/j.resconrec.2020.104679
39

Noorzad, R., and Raveshi, M. (2017), "Mechanical behavior of Waste Tire Crumbs-sand Mixtures Determined by Triaxial Tests", Geotechnical and Geological Engineering, Vol.35, pp.1793-1802. https://doi.org/10.1007/s10706-017-0209-9

10.1007/s10706-017-0209-9
40

Olorunfemi, Idowu Ezekiel, Temitope Akinwale Ogunrinde, and Johnson Toyin Fasinmirin. (2014), "Soil Hydrophobicity: An Overview", Journal of Scientific Research and Reports, Vol.3, No.8, pp.1003-1037. https://doi.org/10.9734/JSRR/2014/7325

10.9734/JSRR/2014/732525471694
41

Poh, P. S. and Broms, B. B. (1995), "Slope Stabilization Using Old Rubber Tires and Geotextiles", Journal of Performance of Constructed Facilities, Vol.9, No.1, pp.76-79. https://doi.org/10.1061/(ASCE)0887-3828(1995)9:1(76)

10.1061/(ASCE)0887-3828(1995)9:1(76)
42

Rowe, R. K. and McIsaac, R. (2005), "Clogging of Tire Shreds and Gravel Permeated with Landfill Leachate", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.6, pp.682-693. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(682)

10.1061/(ASCE)1090-0241(2005)131:6(682)
43

Ryu, B., Choo, H., Park, J., and Burns, S. E. (2022), "Stress-Deformation Response of Rigid-Soft Particulate Mixtures under Repetitive Ko Loading Conditions", Transportation Geotechnics, Vol.37, 100835. https://doi.org/10.1016/j.trgeo.2022.100835

10.1016/j.trgeo.2022.100835
44

Sathiskumar, C. and Karthikeyan, S. (2019), "Recycling of Waste Tires and its Energy Storage Application of by-products-a Review", Sustainable Materials and Technologies, Vol.22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125

10.1016/j.susmat.2019.e00125
45

Singh, D. N. and Devid, K. (2000), "Generalized Relationships for Estimating Soil Thermal Resistivity", Experimental Thermal and Fluid Science, Vol.22, No.3-4, pp.133-143.

10.1016/S0894-1777(00)00020-0
46

Tarnawski, V. R. and Gori, F. (2002), "Enhancement of the Cubic Cell Soil Thermal Conductivity Model", International Journal of Energy Research, Vol.26, No.2, pp.143-157. https://doi.org/10.1002/er.772

10.1002/er.772
47

Tarnawski, V. R., Momose, T., Leong, W. H., Bovesecchi, G., and Coppa, P. (2009), "Thermal Conductivity of Standard Sands. Part I. Dry-state Conditions", International Journal of Thermophysics, Vol.30, pp.949-968.

10.1007/s10765-009-0596-0
48

Tweedie, J., Humphrey, D., and Sandford, T. (1998), "Tire Shreds as Lightweight Retaining Wall Backfill: Active Conditions", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.11, pp.1061-1070. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1061)

10.1061/(ASCE)1090-0241(1998)124:11(1061)
49

Vargas, Watson L. and Joseph J. McCarthy. (2001), "Heat Conduction in Granular Materials", Aiche Journal, Vol.47, No.5, pp.1052-1059. https://doi.org/10.1002/aic.690470511

10.1002/aic.690470511
50

Won, J., Ryu, B., and Choo, H. (2024), "Evolution of Maximum Shear Modulus and Compression Index of Rigid-soft Mixtures under Repetitive K0 Loading Conditions", Acta Geotechnica, 1-16. https://doi.org/10.1007/s11440-023-01945-x

10.1007/s11440-023-01945-x
51

Xiao, Y., Nan, B., and McCartney, J. S. (2019), "Thermal Conductivity of Sand-tire Shred Mixtures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.145, No.11, 06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155

10.1061/(ASCE)GT.1943-5606.0002155
52

Yang, Y.-L., Zhang, T., Reddy, K. R., Li, J.-S., and Liu, S.-y. (2022), "Thermal Conductivity of Scrap Tire Rubber-sand Composite as Insulating Material: Experimental Investigation and Predictive Modeling", Construction and Building Materials, Vol.332, 127387. https://doi.org/10.1016/j.conbuildmat.2022.127387

10.1016/j.conbuildmat.2022.127387
53

Young, T. (1805), "An Essay on the Cohesion of Fluids", Philosophical Transactions of the Royal Society of London, (95), pp.65-87.

10.1098/rstl.1805.0005
54

Yoon, S., Lee, S. R., Kim, Y. S., Kim, G. Y., and Kim, K. (2016), "Prediction of Ground Thermal Properties from Thermal Response Test", Journal of the Korean Geotechnical Society, Vol.32, No.7, pp.5-14.

10.7843/kgs.2016.32.7.5
55

Yun, T. S. and Evans, T. M. (2010), "Three-dimensional Random Network Model for Thermal Conductivity in Particulate Materials", Computers and Geotechnics, Vol.37, No.7-8, pp.991-998.

10.1016/j.compgeo.2010.08.007
56

Yun, T. S. and Santamarina, J. C. (2008), "Fundamental Study of Thermal Conduction in Dry Soils", Granular Matter, Vol.10, pp.197-207.

10.1007/s10035-007-0051-5
57

Zhao, Y., Yu, B., Yu, G., and Li, W. (2014), "Study on the Water-heat Coupled Phenomena in Thawing Frozen Soil around a Buried Oil Pipeline", Applied Thermal Engineering, Vol.73, No.2, pp.1477-1488. https://doi.org/10.1016/j.applthermaleng.2014.06.017

10.1016/j.applthermaleng.2014.06.017
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 40
  • No :4
  • Pages :7-18
  • Received Date : 2024-05-29
  • Revised Date : 2024-06-06
  • Accepted Date : 2024-06-09