All Issue

2022 Vol.38, Issue 4

Research Article

30 April 2022. pp. 5-20
Abstract
References
1
Ancey, C. and Cochard, S. (2009), The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes, Journal of Non-Newtonian Fluid Mechanics, Vol.158, No.1-3, pp.18-35. 10.1016/j.jnnfm.2008.08.008
2
Bernabeu, N., Saramito, P., and Smutek, C. (2014), Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general tridimensional topographies, International Journal of Numerical Analysis and Modeling, Vol.11, No.1, pp.213-228.
3
Chen, H. and Lee, C. F. (2000), Numerical simulation of debris flows, Canadian Geotechnical Journal, Vol.37, No.1, pp.146-160. 10.1139/t99-089
4
Crosta, G. B., Imposimato, S., and Roddeman, D. (2009), Numerical modelling of entrainment/deposition in rock and debris-avalanches, Engineering geology, Vol.109, No.1-2, pp.135-145. 10.1016/j.enggeo.2008.10.004
5
García-Delgado, H., Machuca, S., and Medina, E. (2019), Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia), Landslides, Vol.16, No.3, pp.597-609. 10.1007/s10346-018-01121-3
6
Ginting, B. M. and Mundani, R. P. (2019), Comparison of shallow water solvers: Applications for dam-break and tsunami cases with reordering strategy for efficient vectorization on modern hardware, Water, Vol.11, No.4, pp.639. 10.3390/w11040639
7
Hong, M. and Jeong, S. (2019), A Combined Method for Rainfall-induced Landslides and Debris flows in Regional-scale Areas, Journal of the Korean Geotechnical Society, Vol.35, No.10, pp.17-31. 10.1007/s10346-019-01294-5
8
Hong, M., Jeong, S., and Kim, J. (2019), A combined method for modeling the triggering and propagation of debris flows, Landslides, Vol.17, No.4, pp.805-824. 10.1007/s10346-019-01294-5
9
Hou, J., Wang, T., Li, P. et al. (2018), An implicit friction source term treatment for overland flow simulation using shallow water flow model, Journal of Hydrology, Vol.564, pp.357-366. 10.1016/j.jhydrol.2018.07.027
10
Hürlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008), Evaluation of approaches to calculate debris-flow parameters for hazard assessment, Engineering Geology, Vol.102, No.3-4, pp.152-163. 10.1016/j.enggeo.2008.03.012
11
Iverson, R. M. (1997), The physics of debris flows, Reviews of geophysics, Vol.35, No.3, pp.245-296. 10.1029/97RG00426
12
Iverson, R. M., Reid, M. E., Logan, M. et al. (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nature Geoscience, Vol.4, No.2, pp.116-121. 10.1038/ngeo1040
13
Jeong, S. W. and Park, S. S. (2016), On the viscous resistance of marine sediments for estimating their strength and flow characteristics, Geosciences Journal, Vol.20, No.2, pp.149-155. 10.1007/s12303-015-0032-3
14
Johnson, C. G., Kokelaar, B. P., Iverson, R. M. et al. (2012), Grain-size segregation and levee formation in geophysical mass flows, Journal of Geophysical Research: Earth Surface, Vol.117, No.F1. 10.1029/2011JF002185
15
Kaitna, R., Rickenmann, D., and Schatzmann, M. (2007), Experimental study on rheologic behaviour of debris flow material, Acta Geotechnica, Vol.2, No.2, pp.71-85. 10.1007/s11440-007-0026-z
16
Kim, J. H., Kim, Y. M., Jeong, S. S., and Hong, M. H. (2017), Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes, Environmental Earth Sciences, Vol.76, No.23, pp.1-17. 10.1007/s12665-017-7127-2
17
Laigle, D. and Coussot, P. (1997), Numerical modeling of mudflows, Journal of hydraulic engineering, Vol.123, No.7, pp.617-623. 10.1061/(ASCE)0733-9429(1997)123:7(617)
18
Li, J., Cao, Z., Hu, K. et al. (2018), A depth-averaged two-phase model for debris flows over erodible beds, Earth Surface Processes and Landforms, Vol.43, No.4, pp.817-839. 10.1002/esp.4283
19
Liu, W., He, S., Li, X., and Xu, Q. (2016), Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law, Landslides, Vol.13, No.5, pp.957-965. 10.1007/s10346-015-0632-z
20
Medina, V., Hürlimann, M., and Bateman, A. (2008), Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides, Vol.5, No.1, pp.127-142. 10.1007/s10346-007-0102-3
21
Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., and Vassilevski, Y. V. (2011), A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D, Journal of Computational Mathematics, pp.605-622. 10.4208/jcm.1109-m11si01
22
Pastor, M., Soga, K., McDougall, S., and Kwan, J. S. H. (2018), Review of benchmarking exercise on landslide runout analysis, In Proceedings of the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides, pp.281-323.
23
Parsons, J. D., Whipple, K. X., and Simoni, A. (2001), Experimental study of the grain flow, fluid-mud transition in Debris flows, The Journal of Geology, Vol.109, No.4, pp.427-447. 10.1086/320798
24
Pastor, M., Yague, A., Stickle, M. M. et al. (2018), A two-phase SPH model for debris flow propagation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.42, No.3, pp.418-448. 10.1002/nag.2748
25
Pellegrino, A. M., Di, Santolo, A. S., and Schippa, L. (2016), The sphere drag rheometer: A new instrument for analysing mud and debris flow materials, GEOMATE Journal, Vol.11, No.25, pp.2512-2519. 10.21660/2016.25.5389
26
Pellegrino, A. M. and Schippa, L. (2018), A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows, Environmental earth sciences, Vol.77, No.22, pp.1-13. 10.1007/s12665-018-7934-0
27
Pouliquen, O. and Forterre, Y. (2002), Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane, Journal of fluid mechanics, Vol.453, pp.133-151. 10.1017/S0022112001006796
28
Pudasaini, S. P. (2012), A general two-phase debris flow model, Journal of Geophysical Research: Earth Surface, Vol.117, No.F3. 10.1029/2011JF002186
29
Schatzmann, M., Bezzola, G. R., Minor, H. E. et al. (2009), Rheometry for large-particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry, Rheologica Acta, Vol.48, No.7, pp.715-733. 10.1007/s00397-009-0364-x
30
Scotto, Di., Santolo, A., Pellegrino, A. M., and Evangelista, A. (2010), Experimental study on the rheological behaviour of debris flow, Natural Hazards and Earth System Sciences, Vol.10, No.12, pp.2507-2514. 10.5194/nhess-10-2507-2010
31
Sosio, R. and Crosta, G. B. (2009), Rheology of concentrated granular suspensions and possible implications for debris flow modeling, Water resources research, Vol.45, No.3. 10.1029/2008WR006920
32
Wang, X., Morgenstern, N. R., and Chan, D. H. (2010), A model for geotechnical analysis of flow slides and debris flows, Canadian geotechnical journal, Vol.47, No.12, pp.1401-1414. 10.1139/T10-039
33
Whipple, K.X. (1997), Open-channel flow of Bingham fluids: Applications in debris-flow research, The Journal of Geology, Vol.105, No.2, pp.243-262. 10.1086/515916
34
Xia, X. and Liang, Q. (2018), A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes, Engineering Geology, Vol.234, pp.174-191. 10.1016/j.enggeo.2018.01.011
35
Xia, X., Liang, Q., Ming, X., and Hou, J. (2017), An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations, Water resources research, Vol.53, No.5, pp.3730-3759. 10.1002/2016WR020055
36
Xia, X., Liang, Q., Pastor, M. et al. (2013), Balancing the source terms in a SPH model for solving the shallow water equations, Advances in water resources, Vol.59, pp.25-38. 10.1016/j.advwatres.2013.05.004
37
Zanuttigh, B. and Lamberti, A. (2004), Analysis of debris wave development with one-dimensional shallow-water equations, Journal of Hydraulic Engineering, Vol.130, No.4, pp.293-304. 10.1061/(ASCE)0733-9429(2004)130:4(293)
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 38
  • No :4
  • Pages :5-20
  • Received Date : 2021-11-29
  • Revised Date : 2022-03-03
  • Accepted Date : 2022-03-04